BGP ANYCAST SIMULATIONS
Using GTNetS

Sunitha Beeram
Talal Jaafar
Agenda

- Introduction
- GTNetS Simulations
- Topology
- Some early results
- Future work
- Q&A
IP Anycast

- Hierarchical
 - Local and global nodes
- Flat
 - Ultra DNS – Multiple anycast addresses associated with servers

- Current measurements
 - Planet Lab measurements (Sarat, Terzis et al)
 - Decrease in latency with anycast
 - Clients don’t always hit nearest server
 - Relatively small number of outages, but lasted for long time (>100s)
 - Hint more global nodes might cause instability
 - Ripe K-root measurements (Lorenzo)
 - Good latency
 - Local nodes take load off global nodes, but not by a great factor
 - Quite stable – few switches
 - Ballani and Francis with their Planet Lab measurements conclude that anycast nodes are quite stable – hardly any flips observed
Why Simulations?

- Study the impact of BGP on Anycast
 - BGP Convergence – Path Exploration!
 - Flap Dampening!
 -

- Study the impact of Anycasting on BGP
 - BGP Table sizes growth
 - Large # of global nodes → Convergence impact?

- Simulations Might be useful in analyzing different options for good placements of future anycast servers
Discrete-Event Packet Level simulations
BGP : BGP++ implementation ported from ns-2 (zebra based)
Simulation handles actual routing – longest prefix match based FIB which is populated by BGP
Anycast servers supported using /32 prefix address advertisement
Milnet Topology

- Realistic network model deduced from:
 - Internet topology maps
 - RocketFuel map (6 ISPs that operates in the US)
 - Scan Project map (2 Tier-1 ISPs)
 - Other data sets
 - BGP Routing Table Dump (RouteViews Project)
 - NetGeo (Internet Geographical Database)
 - Mapnet (PoP connections)
Milnet Topology (contd.)

- U.S. Internet Backbone inferred from Milnet
 - 8 national-level ISP networks
 - Total of 9000 routers (793 BGP speakers only)
 - Simulation of 9000 routers
 - Intermediate routers running OSPF
 - Simulation of BGP routers only
 - Abstracting intermediate routers
 - Decision on Intra-AS routing policies
 - Need to infer Inter-AS routing policies
F-root Topology

- Representative f-root Internet backbone connections inferred from routeviews.
 - Simulate 1 BGP speaker per AS
 - Peer-Peer, Customer and Provider relations inferred and appropriate policies applied.
 - Local and global Anycast nodes using no-export policy
 - Total of 44 large ISPs with 467 interconnecting links simulated
Some early results

<table>
<thead>
<tr>
<th>Case</th>
<th>Downtime</th>
<th># of updates</th>
<th>Change in latency</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple redundant links to destn; best path 1 hop away – 1 withdraw</td>
<td>~0</td>
<td>40,190</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>18 redundant links to Destn – 2 hops away -1 withdraw</td>
<td>75s</td>
<td>224,396</td>
<td>-0.43 s</td>
<td>Chooses different router – happens to be closer (overridden by policy earlier)</td>
</tr>
<tr>
<td>18 redundant links to Destn - 2 hops away– 1 link down</td>
<td>140s</td>
<td>34,501</td>
<td>-</td>
<td>Chooses same router – different link</td>
</tr>
<tr>
<td>19 redundant links to Destn – 3 hops away -1 withdraw</td>
<td>90s</td>
<td>53,402</td>
<td>-0.65 s</td>
<td>Again, chooses a closer router (overridden by policy earlier)</td>
</tr>
<tr>
<td>19 redundant links to Destn – 3 hops away – 1 link down</td>
<td>~180s</td>
<td>34,163</td>
<td>-</td>
<td>Chooses same router- different link</td>
</tr>
</tbody>
</table>

*2 Anycast Servers and 1 Client ; Client sends requests at constant rate of 1/s
BGP Table snapshots

- 18 redundant links – Failure by explicit withdraw

before withdraw

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Next Hop</th>
<th>AS_Path</th>
<th>Med</th>
<th>Loc_Pfx</th>
<th>Loc_Rt</th>
<th>NexthopPref</th>
<th>Exit_Prop</th>
<th>Exit_Pf</th>
<th>Exit_Rt</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 192.168.1.1/32</td>
<td>13.221.0.1</td>
<td>20</td>
<td>0</td>
<td>3549</td>
<td>8220</td>
<td>2516 8928</td>
<td>i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 13.163.0.1</td>
<td>13.28.0.1</td>
<td>20</td>
<td>0</td>
<td>3356</td>
<td>1273</td>
<td>8928 i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 32.28.0.1</td>
<td>51.181.0.1</td>
<td>20</td>
<td>0</td>
<td>13237</td>
<td>6539</td>
<td>8928 i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 21.24.0.1</td>
<td>12.185.0.1</td>
<td>20</td>
<td>0</td>
<td>3257</td>
<td>1273</td>
<td>8928 i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 5.19.0.1</td>
<td>18.29.0.1</td>
<td>30</td>
<td>0</td>
<td>4637</td>
<td>5511</td>
<td>8928 i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 4.249.0.1</td>
<td>11.98.0.1</td>
<td>30</td>
<td>0</td>
<td>1273</td>
<td>8928</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 25.61.0.1</td>
<td>25.53.0.1</td>
<td>20</td>
<td>0</td>
<td>6461</td>
<td>5511</td>
<td>8928 i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 25.30.0.1</td>
<td>13.233.0.1</td>
<td>20</td>
<td>0</td>
<td>3561</td>
<td>8928</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 1.30.0.1</td>
<td>12.248.0.1</td>
<td>20</td>
<td>0</td>
<td>320</td>
<td>5511</td>
<td>8928 i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 21.135.0.1</td>
<td>2.191.0.1</td>
<td>0</td>
<td>20</td>
<td>703</td>
<td></td>
<td>i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 12.231.0.1</td>
<td></td>
<td>10</td>
<td></td>
<td>3003</td>
<td>8928</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

after withdrawing advertisement from AS 8928:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Next Hop</th>
<th>AS_Path</th>
<th>Med</th>
<th>Loc_Pfx</th>
<th>Loc_Rt</th>
<th>NexthopPref</th>
<th>Exit_Prop</th>
<th>Exit_Pf</th>
<th>Exit_Rt</th>
</tr>
</thead>
<tbody>
<tr>
<td>*> 192.168.1.1/32</td>
<td>2.191.0.1</td>
<td>0</td>
<td>20</td>
<td>703</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BGP Table Snapshots

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Address</th>
<th>AS</th>
<th>Route</th>
<th>Metric</th>
<th>Next Hop</th>
<th>IGP Cost</th>
<th>Exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.1/32</td>
<td>18.158.0.1</td>
<td>30</td>
<td>0 4766 2516</td>
<td>4637</td>
<td>1257 i</td>
<td>0 4766</td>
<td>2516</td>
</tr>
<tr>
<td>1257 i</td>
<td>21.24.0.1</td>
<td>30</td>
<td>0 5400 5511 13237</td>
<td>4637</td>
<td>1257 i</td>
<td>0 5400</td>
<td>5511</td>
</tr>
<tr>
<td>1257 i</td>
<td>0.209.0.1</td>
<td>20</td>
<td>0 209 286 4637</td>
<td>21.24.0.1</td>
<td>1257 i</td>
<td>0 209</td>
<td>286</td>
</tr>
<tr>
<td>1257 i</td>
<td>21.135.0.1</td>
<td>30</td>
<td>0 1299 1257 i</td>
<td>5.19.0.1</td>
<td>1257 i</td>
<td>0 1299</td>
<td>1257 i</td>
</tr>
<tr>
<td>1257 i</td>
<td>11.12.0.1</td>
<td>20</td>
<td>0 2828 3257 1257 i</td>
<td>11.12.0.1</td>
<td>1257 i</td>
<td>0 2828</td>
<td>3257 1257 i</td>
</tr>
<tr>
<td>1257 i</td>
<td>13.28.0.1</td>
<td>20</td>
<td>0 3356 6517 i</td>
<td>24.251.0.1</td>
<td>1257 i</td>
<td>0 3356</td>
<td>6517 i</td>
</tr>
<tr>
<td>1257 i</td>
<td>24.251.0.1</td>
<td>20</td>
<td>0 6395 3257 1257 i</td>
<td>12.248.0.1</td>
<td>1257 i</td>
<td>0 6395</td>
<td>3257 1257 i</td>
</tr>
<tr>
<td>1257 i</td>
<td>12.248.0.1</td>
<td>20</td>
<td>0 3320 1257 i</td>
<td>30.231.0.1</td>
<td>1257 i</td>
<td>0 3320</td>
<td>1257 i</td>
</tr>
<tr>
<td>1257 i</td>
<td>30.231.0.1</td>
<td>20</td>
<td>0 7911 6517 i</td>
<td>13.233.0.1</td>
<td>1257 i</td>
<td>0 7911</td>
<td>6517 i</td>
</tr>
<tr>
<td>1257 i</td>
<td>13.233.0.1</td>
<td>30</td>
<td>0 8220 3257 1257 i</td>
<td>32.28.0.1</td>
<td>1257 i</td>
<td>0 8220</td>
<td>3257 1257 i</td>
</tr>
<tr>
<td>1257 i</td>
<td>11.98.0.1</td>
<td>20</td>
<td>0 2914 3257 1257 i</td>
<td>25.61.0.1</td>
<td>1257 i</td>
<td>0 2914</td>
<td>3257 1257 i</td>
</tr>
<tr>
<td>1257 i</td>
<td>25.61.0.1</td>
<td>20</td>
<td>0 6461 6453 1257 i</td>
<td>11.98.0.1</td>
<td>1257 i</td>
<td>0 6461</td>
<td>6453 1257 i</td>
</tr>
<tr>
<td>1257 i</td>
<td>0.174.0.1</td>
<td>20</td>
<td>0 174 6453 1257 i</td>
<td>11.98.0.1</td>
<td>1257 i</td>
<td>0 174</td>
<td>6453 1257 i</td>
</tr>
<tr>
<td>1257 i</td>
<td>25.53.0.1</td>
<td>20</td>
<td>0 6453 1257 i</td>
<td>25.61.0.1</td>
<td>1257 i</td>
<td>0 6453</td>
<td>1257 i</td>
</tr>
<tr>
<td>1257 i</td>
<td>4.215.0.1</td>
<td>20</td>
<td>0 1239 1257 i</td>
<td>0.174.0.1</td>
<td>1257 i</td>
<td>0 1239</td>
<td>1257 i</td>
</tr>
</tbody>
</table>

19 redundant links - Link between 1257 and 13237 down after convergence
Inferences

- Simulation highlights problems with BGP path exploration
- Link failures \leftrightarrow e-bgp link failures (assuming there are no mechanisms to explicitly detect link down)
 - Longer to converge but lesser network overhead (updates)
- Explicit Withdraws \leftrightarrow i-bgp failures or end server failures resulting in a withdraw
 - Faster but at the cost of lot more updates
- Policies can effectively model the relations – before failures, in the simulated case, longer path was chosen because of local preference metrics \Rightarrow Reinforces the fact that “nearest” is not in necessarily in terms of latency
Simulation Caveats

- Router Ids introduce randomness! Used as tie breakers when all else equal => might impact chosen routes and hence convergence
- Topology data might be insufficient
 Need a more global view to infer topology and AS relations correctly
Future Work

Use simulations to

- Compare Unicast Vs Anycast
 - Load Balancing properties
 - Latency
 - Impact on Convergence
- Study Impact of Flap Dampening
- Study impact of large number of global nodes
- Viability of Anycast for session oriented protocols
DDoS attacks
- Earlier measurements show local nodes don’t really take load off global nodes. Would this hold in case of DDoS attacks?

Include i-BGP routers and i-BGP topology
- Will it have any impact?
- With I-BGP we can model Hot Potato Routing which can also largely impact routing decision!
- Use PoP topology for i-BGP?

Impact of growth of Internet (=> increase in path length?) on anycast stability
Is Anycasting the right way to go?

- IP level anycasting should be good for low level services like DNS
- IP anycasting: Load balancing – really? Definitely does not take server loads into account
- Others should use application level anycasting – Eg. PIAS
Questions
References

Joe Abley. Hierarchical Anycast for Global Service Distribution

Sandeep Sarat et al – On the use of anycast in DNS.
http://www.cs.jhu.edu/~sarat/Anycast-TR.pdf

Hitesh Ballani, Paul Francis – Towards a global IP anycast service. Sigcomm 2005